Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Studying past climate variability is fundamental to our understanding of current changes. In the era of Big Data, the value of paleoclimate information critically depends on our ability to analyze large volume of data, which itself hinges on standardization. Standardization also ensures that these datasets are more Findable, Accessible, Interoperable, and Reusable. Building upon efforts from the paleoclimate community to standardize the format, terminology, and reporting of paleoclimate data, this article describes PaleoRec, a recommender system for the annotation of such datasets. The goal is to assist scientists in the annotation task by reducing and ranking relevant entries in a drop-down menu. Scientists can either choose the best option for their metadata or enter the appropriate information manually. PaleoRec aims to reduce the time to science while ensuring adherence to community standards. PaleoRec is a type of sequential recommender system based on a recurrent neural network that takes into consideration the short-term interest of a user in a particular dataset. The model was developed using 1996 expert-annotated datasets, resulting in 6,512 sequences. The performance of the algorithm, as measured by the Hit Ratio, varies between 0.7 and 1.0. PaleoRec is currently deployed on a web interface used for the annotation of paleoclimate datasets using emerging community standards.more » « less
-
Abstract The North American monsoon (NAM) is an important source of rainfall to much of Mexico and southwestern United States. Westerly winds (westerlies) can suppress monsoon circulation and impact monsoon timing, intensity, and extent. Recent Arctic warming is reducing the temperature gradient between the equator and the pole, which could weaken the westerlies; however, the implications of these changes on the NAM are uncertain. Here we present a new composite index of the Holocene NAM. We find monsoon strength reached a maximum circa 7,000 years ago and has weakened since then. Proxy observations of temperature, hydroclimate and upwelling, along with model simulations, show that the NAM was modulated by the westerlies over the Holocene. If the observed Holocene pattern holds for current warming, a weaker meridional temperature gradient and weaker westerlies could lead to a stronger future NAM.more » « less
-
Abstract An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19thCentury (median, 5th, 95thpercentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, −0.05). The multi-method ensembles and the code used to generate them highlight the utility of the Temperature 12k database, and they are now available for future use by studies aimed at understanding Holocene evolution of the Earth system.more » « less
-
Abstract Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n = 813). Proxy composite timeseries were computed for 30 of the IPCC AR6 regions and compared to two full‐Holocene transient model simulations (TraCE‐21ka and HadCM3) and twelve mid‐Holocene CMIP6 simulations. We find that throughout Northern Hemisphere monsoon regions, proxy and model simulations indicate wetter‐than‐modern conditions during the early and mid‐Holocene while Southern Hemisphere monsoon regions were drier. This insolation driven trend toward modern values began approximately 6,000 years ago, and the clear agreement among proxy records and models may reflect the large magnitude of precipitation change and consistent atmospheric circulation forcing mechanism for these regions. In the midlatitudes, the pattern of change is less certain. Generally, proxy composites show a wetting trend throughout the Holocene for the northern midlatitudes, possibly due to strengthening westerlies from an increasing latitudinal temperature gradient. However, simulations indicate that the magnitude of change was relatively low, and for portions of North America, there is a proxy‐model disagreement. At high latitudes, hydroclimate is positively correlated with temperature in both proxies and models, consistent with projected wetting as temperatures rise. Overall, this large proxy database reveals a coherent pattern of hydroclimate variability despite the challenges associated with reconstructing hydroclimate fields.more » « less
-
null (Ed.)Abstract. Holocene climate reconstructions are useful for understanding the diversefeatures and spatial heterogeneity of past and future climate change. Herewe present a database of western North American Holocene paleoclimaterecords. The database gathers paleoclimate time series from 184 terrestrialand marine sites, including 381 individual proxy records. The records spanat least 4000 of the last 12 000 years (median duration of 10 725 years)and have been screened for resolution, chronologic control, and climatesensitivity. Records were included that reflect temperature, hydroclimate,or circulation features. The database is shared in the machine readableLinked Paleo Data (LiPD) format and includes geochronologic data forgenerating site-level time-uncertain ensembles. This publicly accessible andcurated collection of proxy paleoclimate records will have wide researchapplications, including, for example, investigations of the primary featuresof ocean–atmospheric circulation along the eastern margin of the NorthPacific and the latitudinal response of climate to orbital changes. Thedatabase is available for download at https://doi.org/10.6084/m9.figshare.12863843.v1 (Routson and McKay, 2020).more » « less
An official website of the United States government
